Problem Set 1: due 10 Oct 2018

- 1) Derive by intuitive methods the thermal diffusivity and shear viscosity for a dilute gas of particles undergoing hard sphere interactions.
- 2) Consider a heavy particle of mass M, radius d_2 in a gas of light particles of mass m, radius d_1 ($m \ll M$, $d_2 > d_1$) at temperature T.
 - a) Estimate the mobility of the heavy particle.
 - b) When will the heavy particle be fully deflected from its trajectory? What is the deflection length?
 - c) When will the energy of the heavy particle equal that of the light background particle?
- N.B.: For Problems 1-2, you may find it useful to consult the Supplementary Notes on Scaling Methods and to read "Qualitative Methods in Physical Kinetics and Hydrodynamics", by V.P. Krainov.
- 3) Consider a plasma for which $\underline{J} = \sigma \underline{E}$ with σ a constant, and for which the displacement current is negligible.
 - a) Derive an equation for the magnetic field \underline{B} . What type of equation is this? Comment on the coefficient.
 - b) Assuming $\underline{B} = B(\underline{x})e^{-i\omega t}$, what is the depth of penetration of the field into the plasma? This is the collisional skin depth.
 - c) Calculate the energy dissipated by the penetration process.
 - d) Calculate the corresponding penetration depth for a collisionless plasma, retaining displacement current effects, as discussed in class. Assume $\omega < \omega_{p_e}$.

Physics 218A

Plasma Physics

- 4) Consider a beam of electrons moving at constant speed $V_0\hat{x}$. The beam is shot into a background plasma. The beam has density n. Take $n_b \ll n_0$, where n_0 is the density of the background plasma.
 - a) What are the dielectric function and wave frequency for waves in the beam alone? Discuss the energy of these waves. Why can the energy be negative?
 - b) Now derive the dielectric for plasma waves in the beam + plasma system.Discuss the result.
 - c) Take $n_b = n_0$. Investigate the stability of the system by going to a frame moving at $-(V_0/2)\hat{x}$.
- Derive the dispersion relation for an ion-acoustic wave for the case of warm ions.Take ions adiabatic and electrons isothermal. Why is this reasonable?
- 7) Read the classic paper by P. Debye, posted under Supplementary Material. Write a 1-2 page summary. Be prepared to present this to the class. Be sure to answer:
 - Why was Debye driven to confront screening processes?
 - What was the impact of screening on the colloidal aggregation process he was studying?

N.B.: You may also find it useful to consult the posted review article by Chandrasekhar.